The ClEaning and Enhanced disiNfection (CLEEN) study: A stepped-wedge cluster randomised trial

May 2025

Brett Mitchell, Katrina Browne, Nicole White, Philip Russo, Allen Cheng, Andrew Stewardson, Georgia Matterson, Peta Tehan, Maham Amin, Maria Northcote, Martin Kiernan, Jennie King, David Brain, Nirmali Sivapragasam

Website disclaimer

This presentation, available on the CLEEN study website was, to the best our knowledge, correct at the time of posting.

Please refer to the publications for definitive data.

The CLEEN team

Primary roles of the team

- Infectious disease physicians (2)
- Infection control professionals (3)
- Health economists (2)
- Researchers (2)
- Scientist (1)
- Biostatistician (1)
- Educators (1)
- Clinician other (1)

AlfredHealth

Several team members lead IPC hospital team Severak other team members have led IPC teams

Declarations

- This project is funded by a nationally competitive government grant, NHMRC Emerging Leadership Investigator grant (Prof Brett Mitchell), (GNT2008392), administered by Avondale University
 - In kind support from Hunter Medical Research Institute and GAMA Healthcare Australia
 - No role in design, data collection, analysis
- Editor-in-Chief, Infection Disease and Health

Study Registration

ACTRN12622001143718

Shared Medical Equipment

Who has challenges with cleaning shared medical equipment in their facility?

Who has **solved the problem** of cleaning shared medical equipment in their facility?

Cleaning of shared medical equipment a (common) problem?

Who is responsible for cleaning it?

"I don't have time"

Does it get cleaned?

"That is not my role"

What should we clean it with?

"We don't have the money"

So, what can we do?

Don't pick a challenge you cannot yet deal with—attack the crux of the situation, build momentum, and then reexamine your position and its possibilities

Does the cleaning of shared equipment make a difference to patient outcomes?

What does the evidence tell us? Environmental cleaning & observational studies

Review

How long do nosocomial pathogens persist on inanimate surfaces? A scoping review

L. Porter a,b,† , O. Sultan a,b,† , B.G. Mitchell c,d,e , A. Jenney f , M. Kiernan g , D.J. Brewster h,i , P.L. Russo a,b,c,*

Abdul Khadar ^{d,k}, Philip L. Russo ^{b,n,o}, Jean-Yves Maillard ^p, Helen Rawson ^q, Katrina Browne ^{a,b}, Martin Kiernan ^{b,r}

				Pathoge	en	Rar	nge of survival in day (unless otherwise	S
	Experimental (+ room) Control (-ve room) Odds Ratio			Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	lom, 95% CI
.1.1 MRSA								
Anderson	103	11005	725	293386	7.1%	3.81 [3.10, 4.69]		
Huang Mitchell	57 74	1454 884	248 163	8697 5344	7.0% 7.0%	1.39 [1.04, 1.86] 2.90 [2.18, 3.86]		
Subtotal (95% CI)	7.4	13343	103	307427	21.1%	2,50 [1,38, 4,54]		
Total events	234		1136					
		Citro Esche Klebs	nolderia bacter f erichia c siella pn	reundii oli eumoni			0.13-8 0.06-0.11 <1 min to 56 0.57-600	<u></u>
			us mira				0.16-0.16	
			domonas onella sį				0.08-7 0.29-5	
		Serra	tia spp.				0.29-20	-
		Stenotrophomonas maltophilia			naltopi	hilia	0.29-1]
			Haemophilus influenzae				1-1	
		Haem	nophilus	influen	zae		1-1	
Fungi			nophilus ida auri:		zae		14-14	
Fungi		Cand			zae			
Fungi		Cand Cand	ida auri:		zae		14-14	

<1 min to 0.01

<1 min to 12

1-2

Cytomegalovirus

Human virus

SARS-CoV

What does the evidence tell us? Environmental cleaning & observational studies

Test for overall effect Z = 1.24 (P = 0.22)

Review

How long do nosocomial pathogens persist on inanimate surfaces? A scoping review

L. Porter a,b,† , O. Sultan a,b,† , B.G. Mitchell c,d,e , A. Jenney f , M. Kiernan g , D.J. Brewster h,i , P.L. Russo a,b,c,*

Brett G. Mitchell a,b,c,d,* , Julee McDonagh e,f , Stephanie J. Dancer g , Sindi Ford h,i , Jenny Sim j,k,l,m , Bismi Thottiyil Sultanmuhammed

Abdul Khadar ^{d,k}, Philip L. Russo ^{b,n,o}, Jean-Yves Maillard ^p, Helen Rawson ^q, Katrina Browne ^{a,b}, Martin Kiernan ^{b,r}

Table Range	II of survival b	y patho	ogen								
		Pathogen					Range of survival in days (unless otherwise				
·	Experimental (+ room)	Control (-v	/e room)		Od	ds Ratio	indica	Odds Ra	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Ra	andom, 95% CI		M-H, Random,	, 95% CI	
.1.1 MRSA											
Inderson	103	11005	725	293386	7.1%	3	.81 [3.10, 4.69]			-	
luang	57	1454	248	8697	7.0%	1.	.39 [1.04, 1.86]		⊢ •	_	
ditchell	74	884	163	5344			.90 [2.18, 3.86]			-	
Subtotal (95% CI)		13343		307427	21.1%	2.	50 [1.38, 4.54]		-	◆	
otal events	234		1136								
leterogeneity: Tau ² :			< 0.00001); l² = 94%							
Test for overall effect	EZ= 3.01 (P = 0.00	03)									
										_	
		Burk	holderia	ı cepaci	a			0.13 - 8			
		· · ·							4		
1.1.5 Clostridioide	es difficile										
Anderson	43	3	3797	1278	307890	7.09	6 2.75	[2.02, 3.73]			-
Shaughnessy	10)	91	77	1679	6.29	6 2.57	[1.28, 5.15]			
Subtotal (95% CI)			3888		309569	13.29		2.05, 3.60]			•
Total events	53	3		1355							
Heterogeneity: Ta			1 (P = 0.8		%						
Test for overall eff											
rootior oreran on	0002-1.010	0.00001	,								
			στι ορποι		•	mu		U.L/ 1			
	Haemophilus influenzae 1—1										
Fung	ei –	Cana	ida auri	s				14-14			
1.1.2 VRE	,-										
Anderson	89	g 4	1083	423 30	07241	7.1%	16.16 [12.83, 2	20.361			-
Drees	19		138	31		6.4%	2.42 [1.32,				_
Ford	47	_	149	89		6.8%	1.09 [0.71,				
Huang	58		291	256		7.0%	1.62 [1.21,				
Zhou	69	9 3	556	92	4929	7.0%	1.04 [0.76,	1.43]		_	
Subtotal (95% C	I)	9	217	32	22028	34.3%	2.36 [0.61,	9.15]			

What does the evidence tell us? Randomised control trials

First author	Year	Primary intervention	Primary outcome
Salgado	2013	Antimicrobial surfaces Copper alloy	 MRSA/VRE colonisation
Boyce	2017	Enhanced cleaning patient rooms • H ₂ O ₂ & QAC	Colony countsColonisation/ infection (MRSA,CDI,VRE)
Ray	2017	Bleach wipe	CDI incidence
Anderson	2017	Terminal room disinfection • QAC, UV, bleach	HAI rates
Mitchell	2019	Enhanced cleaning patient rooms	• CDI, VRE, SAB

Peters et al, ARIC, 2022

What does the evidence tell us? Shared medical equipment

• Shared medical equipment has been implicated in transmission and subsequent infection in ICU using WGS (Lee et al, Infect Control Hosp Epidemiol. 2018;39(6):668-75)

 No RCT to examine the impact of improved cleaning of shared medical equipment on HAIs

Need evidence to inform a common problem in hospitals globally

The CLEANING AND ENHANCED DISINFECTION study

First RCT to examine the impact of improved cleaning of shared medical equipment on HAIs

What does the evidence tell us? Shared medical equipment

Study Protocol

STUDY PROTOCOL

Open Access

A randomised controlled trial investigating the effect of improving the cleaning and disinfection of shared medical equipment on healthcare-associated infections: the CLEaning and Enhanced disiNfection (CLEEN) study

Katrina Browne¹, Nicole White², Peta Tehan^{1,3}, Philip L Russo^{3,4}, Maham Amin⁵, Andrew J. Stewardson^{3,6}, Allen C. Cheng^{3,6}, Kirsty Graham⁵, Gabrielle O'Kane⁷, Jennie King^{5,8}, Martin Kiernan^{1,9}, David Brain² and Brett G. Mitchell^{1,3,5,8}*

Extra cleaning of shared equipment

Different parts to the CLEEN study and outcomes

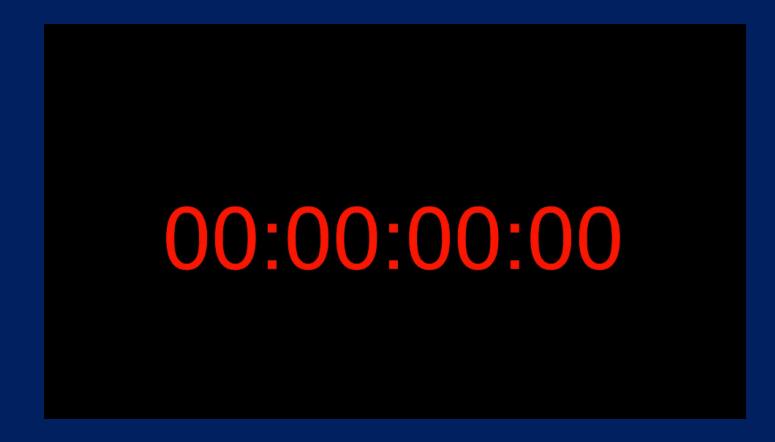
Randomized control trial

Effectiveness

Does additional cleaning reduce HAIs?

Improvements

 Can we improve the thoroughness of cleaning?


Cost effectiveness

 Is additional cleaning a cost-effective intervention?

Observational, qualitative and modelling

- Time and motion
 - How long does it take to clean?
- Cleaner interviews
 - Cleaners' experience with feedback
- Degradation audits
- Practical considerations
- Scenario modelling
 - Different approaches to the CLEEN study
- Dose-response

CLEEN study: Time and motion

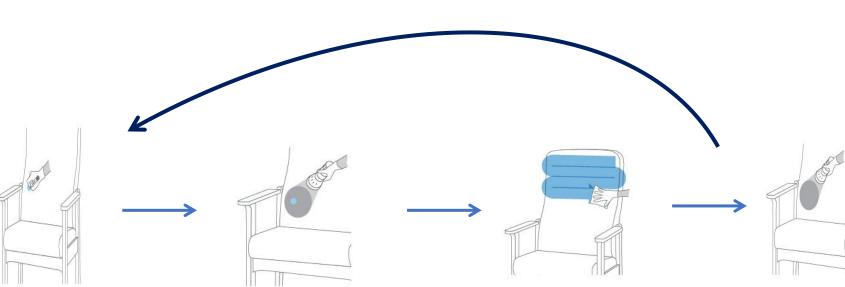
Time and Motion: Why?

 How can we effectively plan cleaning programs and staff these accordingly?

 Allocating cleaning responsibility means time, especially for clinical staff

Cost-effectiveness evaluations

Plan future cleaning models



Time and motion study

Methods

- Observational study, time and motion
- Participants received training on how to clean shared medical equipment
- UV dot placed, item cleaned, recorded how long.

Time and motion study

Results

Type of equipment	Mean time: effectively* clean (min:sec)	Min time (min:sec)	Max time (min:sec)
Blood glucose testing kit	0:50	0:27	1:10
Intravenous stand	1:20	0:40	2:01
Infusion pump	1:21	0:31	2:06
Blood pressure monitor	1:49	1:00	2:13
Patslide	2:17	1:38	3:00
Metal trolley	2:19	1:38	4:20
Wheelchair	2:29	1:21	3:38
Resuscitation trolley	2:29	2:01	3:50
Computer on wheels	2:43	1:46	4:00
Commode	2:58	2:18	4:20
Bladder scanner	3:16	2:09	5:01
Medication trolley	3:53	3:15	4:28

CLEEN study: RCT

Investigating the effect of enhanced cleaning and disinfection of shared medical equipment on health-care-associated infections in Australia (CLEEN): a stepped-wedge, cluster randomised, controlled trial

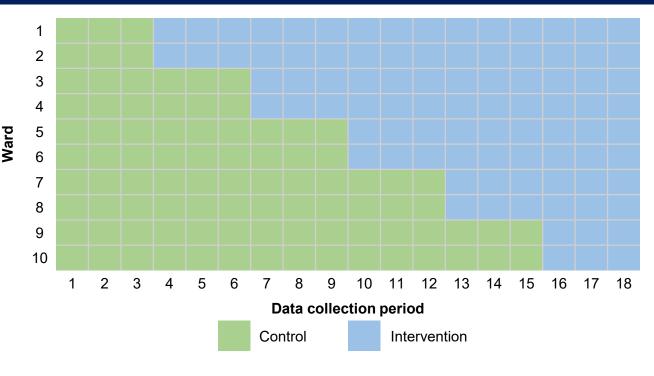
Katrina Browne, Nicole M White, Philip L Russo, Allen C Cheng, Andrew J Stewardson, Georgia Matterson, Peta E Tehan, Kirsty Graham, Maham Amin, Maria Northcote, Martin Kiernan, Jennie King, David Brain, Brett G Mitchell

Summary

Background There is a paucity of high-quality evidence based on clinical endpoints for routine cleaning of shared medical equipment. We assessed the effect of enhanced cleaning and disinfection of shared medical equipment on health-care-associated infections (HAIs) in hospitalised patients.

Lancet Infect Dis 2024

Published Online August 13, 2024 https://doi.org/10.1016/ S1473-3099(24)00399-2


CLEEN study: different parts and outcomes

- Effectiveness of additional cleaning on HAIs
- Improvements in the thoroughness of cleaning
- Cost effectiveness
- Time and motion (sub-study)
- Cleaner's experience (interviews)
- Scenario modelling

Design, population and outcomes

Primary outcome

 Proportion of adult inpatients with a HAI (any HAI). Examined all HAIs

Sub-groups

- SSI, BSI, UTI & PN (combined)
- All HAIs excluding COVID-19
- All HAIs excluding EENT

Population

- 1 hospital (500 bed)
- 10 wards, 2 wards per cluster
- 2 week time periods
- 9 months

Secondary outcomes

- Thoroughness of cleaning, florescent marker and UV light
- Cost-effectiveness; Cleaning time; Cleaning staff interviews

Intervention

• 3 extra hours per weekday, dedicated for the cleaning of shared medical equipment only (dedicated staff)

Training

- 2 in 1 detergent and disinfectant wipes
 - Clinell Universal
 - Clinell sporicidal (commodes)

 Fortnightly auditing of the thoroughness of cleaning with feedback to staff

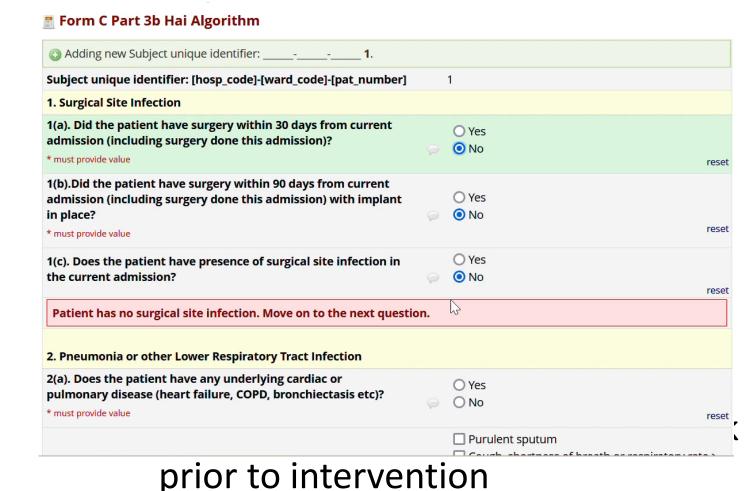
Comparison (standard care)

No additional cleaning of shared medical equipment

 Cleaning of shared medical equipment remit of clinical staff after use

No feedback of florescent marker UV dots

Shared medical equipment



Bladder scanner Blood glucose kits Blood pressure monitor Commodes Computer on wheels Infusion pumps IV poles/stands Medication trolleys Metal trolleys **Patslides** Rollator frame Resuscitation trolleys Walking frames Wheelchairs

Methods: data collection and quality

Data collection

- Fortnightly PPS on all patients
- Data entry in HAI algorithm
- ECDC PPS protocol for infection definitions
- Single-blinded (data collector)

Methods: data collection and quality

Data collection

- Fortnightly PPS on all patients
 - How many people 'today' have an HAI?

ECDC PPS protocol for infection definitions

Single-blinded (data collector)

Statistical considerations

- With 3960 patients, sufficiently powered for a 35% reduction in total HAI infection, baseline prevalence 11%, an inter-cluster correlation of 0.3, coefficient of variation of 0.65—allowing for variation.
- Generalised linear mixed models (GLMM)
- Fortnightly data collection periods were modelled as a categorical fixed effect to adjust for background trends independent of intervention exposure
- Sensitivity analysis assessed
 - Leave-one-out analysis
 - Delays in intervention effectiveness
 - Choice of link function (logit vs log vs identity)

Statistical analysis plan

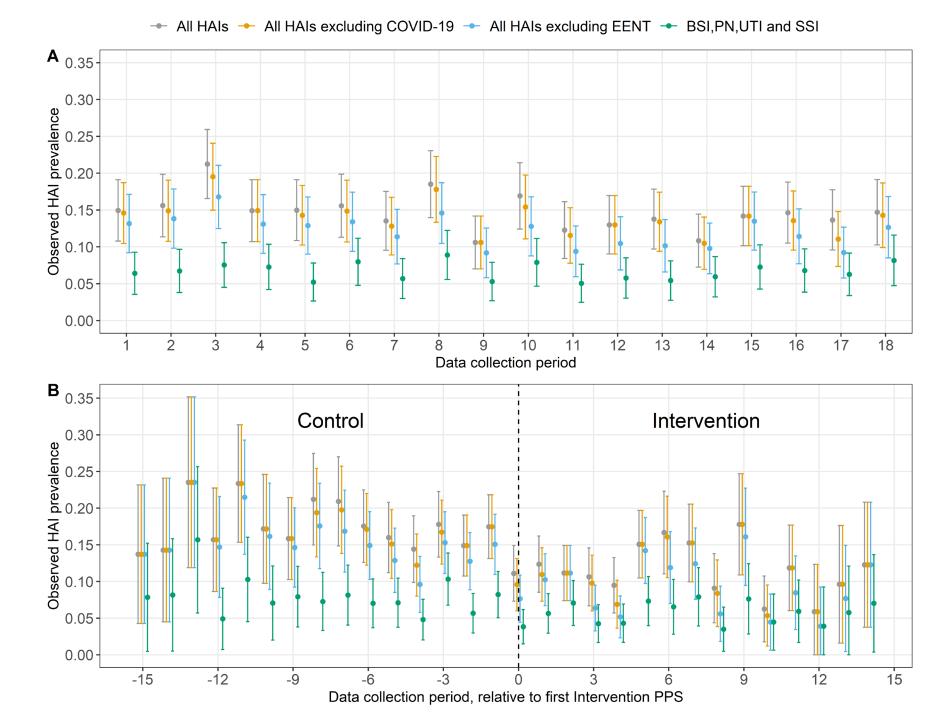
A Follow this preprint

A randomised control trial investigating the effect of improving the cleaning of shared medical equipment on healthcare-associated infections (The CLEEN study): Statistical Analysis Plan

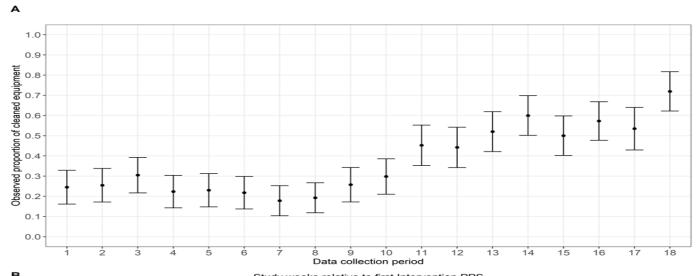
Nicole White, Allen Cheng, Katrina Browne, Philip Russo, Andrew Stewardson, Maham Amin, Kirsty Graham, Jennie King, Peta Tehan, David Brain, Maria Northcote, Brett Mitchell doi: https://doi.org/10.1101/2023.12.20.23300169

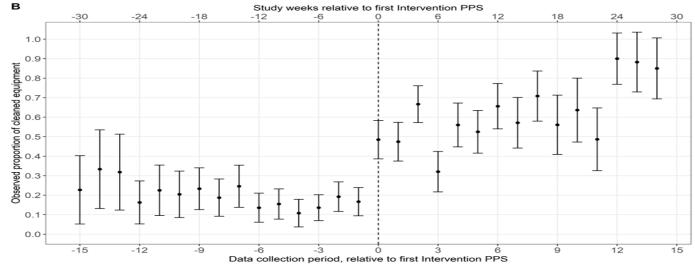
Results

- 5,005 patients were included in the study
- 2,497 (49·9%) in the control, 2,508 (50·1%) in the intervention
- 49.5% male
- Unadjusted results:
 - Control 433 HAIs from 2,497 patients (17.3%, 95%CI 15.9-18.8),
 - Intervention 301 HAIs from 2,508 patients (12.0%, 95%CI 10.7 to 13.3)

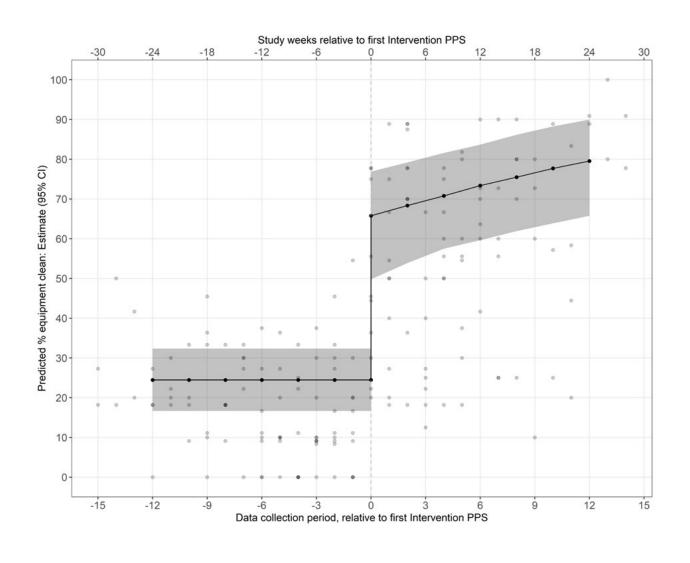

Primary outcome - All HAIs

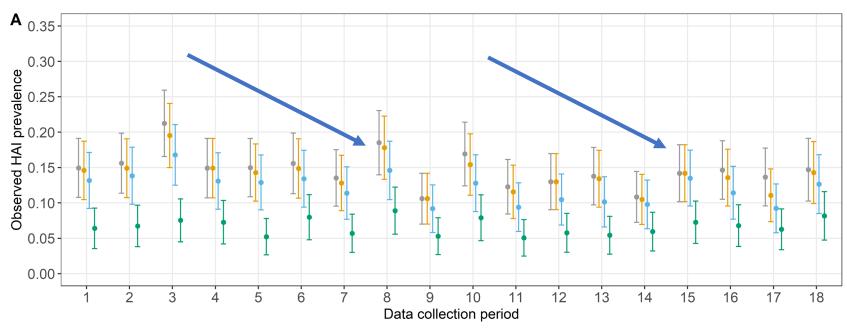
Control 14.9% (10.4 to 19.4) Intervention 9.8% (6.1 to 14.1) OR 0.62 (0.45 to 0.80), p<0.001


Absolute difference -5.2 (-8.2 to -2.3) Relative difference -34.5 (-50.3 to -17.5)

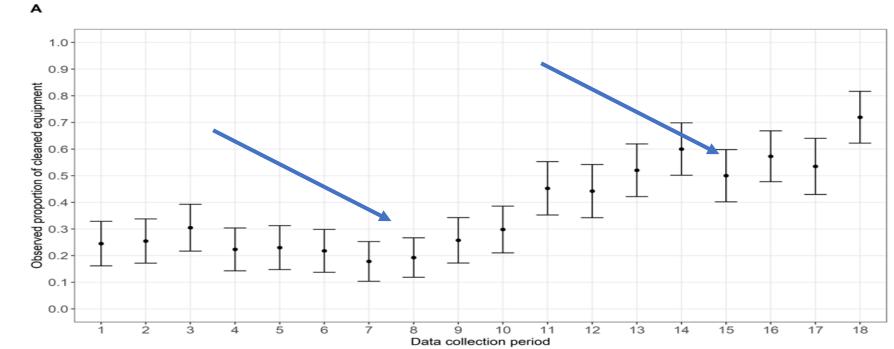

Results: sub-analysis

Outcome	Control % (95%CI)	Intervention % (95%CI)	OR (95%CI)	Absolute Difference % (95%CI)	Relative Difference % (95%CI)	p-value
All HAIs	14.9 (10.4 to 19.4)	9.8 (6.1 to 14.1)	0.62 (0.45 to 0.80)	-5.2 (-8.2 to -2.3)	-34.5 (-50.3 to -17.5)	<0.001
BSI, PN, UTI and SSI	6.3 (3.3 to 9.6)	4.0 (1.9 to 6.8)	0.62 (0.42 to 0.86)	-2.3 (-4.3 to -0.7)	-36.2 (-56.1 to -12.8)	<0.013
All HAIs excluding COVID-19	14.4 (10.2 to 19.0)	9.0 (5.7 to 13.4)	0.59 (0.45 to 0.77)	-5.3 (-8.1 to -2.7)	-37.2 (-51.3 to -19.5)	<0.001
All HAIs excluding EENT	13.0 (8.6 to 17.4)	8.3 (4.9 to 12.0)	0.60 (0.45 to 0.81)	-4.8 (-7.6 to -2.1)	-36.7 (-51.7 to -17.4)	<0.001


Results: secondary outcome (florescent UV dots)



- 1,786 individual pieces of shared medical equipment (925 control, 861 intervention) were audited.
- The proportion of equipment cleaned increased
 - Control: 24·3% (95%Cl 15·7 to 33·2)
 - Intervention 65·6 % (95%CI 51·6 to 77·1) 0 weeks after intervention exposure
 - OR 5.94 (4.13 to 8.55, p<0.001)


Results: secondary outcome (florescent UV dots)

HAI prevalence

Proportion cleaned equipment

Confounders & other considerations

- No policy changes, such as screening and isolation
- No reported outbreaks occurred during the study period
- X Colonisation change in MRO colonisation pressure
- X No long-term secular trends
- Hand hygiene compliance constant
- Sensitivity analysis results consistent
 - Leave one out, reduction in all infection types, modelling delays

CLEEN study: discussion

- Reaffirms the importance of a hygienically clean clinical environment for patient safety
- Potential reason for effect size:
 - Control period, low levels of effective cleaning
 - ? 'cleaning in-between'
 - High baseline infection
 - Hand / environment interaction
- Did not assure that multiple-use items were cleaned in between every patient, rather, a minimum standard of once a day
- Limitations: single centre, high baseline infection, no genomics

CLEEN study: Cleaner (PSA) interviews

Remember the point of the study and who is usually responsible for cleaning

CLEEN study: Cleaners experience study

Method and results

Methods

- Describe their personal experiences of cleaning shared medical equipment and how they prefer to receive feedback about their work
- Semi-structured focus group

Results

- Regarding feedback the cleaners preferred method was verbal or through email (small groups or individually)
- Did not like the public displays of feedback.
- Furthermore, it was noted that cleaners valued demonstrations of cleaning processes as an additional feedback method

Implementation challenges: CLEEN and REACH studies

Don't bother too much. They're not auditing our ward.

> Cleaning areas just in case might be dot there

What do you mean we need to clean the bed rails?
SOMEONE CALL THE UNION!!!

It is too hard to clean the bed with the patient in it

Other thoughts influencing implementation (may or may not control)

• Cleaning is a skilled role, recognise

Payment and remuneration

Diversity in workforce and workforce models

Cleaning services often first to get 'cut' –
 but they are cost-effective!

Cost-effectiveness

Cost-effectiveness methods

 We undertook a within-trial costeffectiveness analysis

We used a decision tree

We compared the CLEEN intervention with usual care

No Infection **BSI** Intervention PN Infection SSI UTI GI Decision GI-CDI LRI **EENT** No Infection Other **Usual Care** Infection

Hospital costing perspective

Data sources: transition probabilities (1)

Variable	Parameter (%)	Source	
Usual care			
Probability of infection	0.13	Trial data	
Probability of BSI	0.09	Trial data	
Probability of PN	0.07	Trial data	
Probability of SSI	0.17	Trial data	
Probability of UTI	0.13	Trial data	
Probability of GI	0.14	Trial data	
Probability of CDI	0.05	Trial data	
Probability of LRI	0.04	Trial data	
Probability of EENT	0.15	Trial data	
Probability of other infection	0.17	Trial data	

Data sources: transition probabilities (2)

Variable	Parameter (%)	Source	
Intervention			
Probability of infection	0.10	Trial data	
Probability of BSI	0.04	Trial data	
Probability of PN	0.11	Trial data	
Probability of SSI	0.17	Trial data	
Probability of UTI	0.16	Trial data	
Probability of GI	0.17	Trial data	
Probability of CDI	0.05	Trial data	
Probability of LRI	0.01	Trial data	
Probability of EENT	0.22	Trial data	
Probability of other infection	0.08	Trial data	

Data sources: excess LoS

Variable	Parameter (mean, SD)	Source
Excess LoS		
BSI	11.4 (2.8)	Stewart et al
PN	16.3 (4.5)	Stewart et al
SSI	9.8 (2.7)	Stewart et al
UTI	4 (0.5)	Mitchell et al
GI	6 (3.4)	Stewart et al
CDI	0.9 (3.7)	Mitchell et al
LRI	7.3 (2.8)	Stewart et al
EENT	0 (0)	Expert opinion
Other infection	14 (9.1)	Stewart et al

Data sources: costs

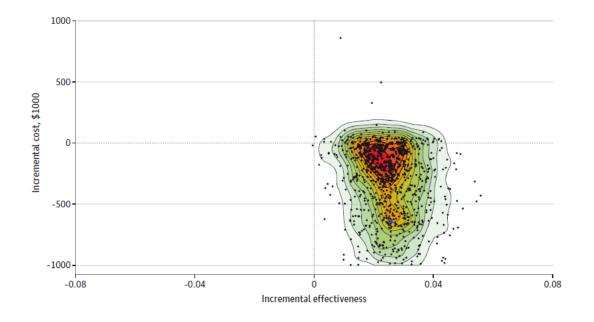
Variable	Parameter	Source
Intervention (in-trial) costs		
Audit & Feedback	\$3,537	Trial data
Staff training	\$2,358	Trial data
Trainer time	\$472	Trial data
Staffing	\$106,110	Trial data
Sporicidal wipes	\$1,134	Trial data
Universal wipes	\$9,737	Trial data
Indicator tags	\$1,318	Trial data
UV torch & markers	\$116	Trial data
LOS (daily)	\$2,151	IHACPA

Data sources: costs

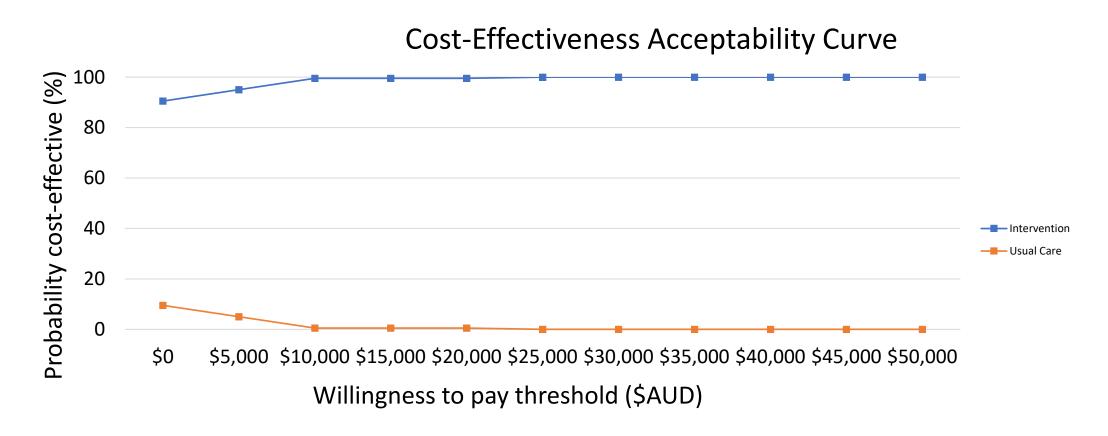
- Costs included
 - Audit and feedback
 - Staff training
 - Trainer time
 - Staffing
 - Cost of additional wipes
 - Indicator tags
 - UV torch and markers

Total in-trial costs ~\$126,000

Data sources: other


- Length of stay for HAIs
 - Data from literature
 - Only used studies where time-dependent bias was accounted for

- Effect of intervention:
 - Changes in infection rates observed for each infection from CLEEN study


Results

For every 1000 patients this trial is implemented for, a hospital could:

- Prevent 30 infections
- Save \$642,010

Results: CE acceptability curve comparing probability of intervention and usual care being cost-effective

• Even if a decision-maker's willingness to pay for an avoided infection is \$0, the probability that this intervention remains cost-saving is very high (>90%).

But wait, my hospital is different...

 We undertook scenario analyses to explore the impact of uncertainty on results

 Involves changing key parameter values reflecting plausible decisionmaking scenarios beyond a clinical trial setting

- Two scenarios examined:
 - 1. A lower effectiveness outcome
 - 2. Using more expensive biodegradable wipes

Results: scenario analyses

- Halving the effectiveness per 1000 patients
 - Prevents 13 HAIs
 - Saves ~ \$460,000

- A biodegradable wipe (more expensive)
 - Prevent 25 HAIs
 - Saves ~ \$637,000

CLEEN: Cost-effectiveness conclusions

If a decision-maker is looking to maximise health gain per dollar spent, they should invest in an intervention that focuses on cleaning shared medical equipment.

If they don't, they will forego opportunity to save money, reduce healthcare associated infections and improve patient safety in the hospital setting

Numbers are people

Future implementation and modelling

Approach	Pros	Cons
Dedicated cleaners like CLEEN	 Ease of implementation Control / direct line of sight / oversight Costs easy to quantify CEA to support 	 Difficult to recruit/retain Boredom / repetitive Risk of clinical staff cleaning (even) less
Cleaning staff on ward, increase hours/change role	 Ease of implementation Control / direct line of sight / oversight Less risk of boredom 	 Would they clean shared equipment? Additional time absorbed for 'other tasks' Risk of clinical staff cleaning (even) less
Centralised cleaning model	 Use of automation for disinfection Less clutter on wards Potentially more attractive role 	Space to undertakeDistribution of equipment
Clinical staff to improve clean	Clean after use benefits	 Hasn't worked to date Opportunity cost. Cleaning takes time, what are clinical staff not going to do

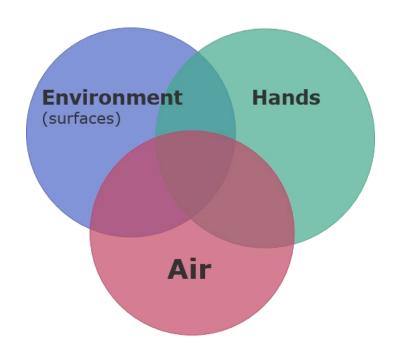
CLEEN study: other

- Degradation audit
 - No effect on equipment
- What about detergent wipes?
 - No RCT demonstrating the benefit of detergent cleaning for shared medical equipment on HAIs
- Hospital wards layout
 - Small number of single rooms, mainly two and four-bed
- Hospital was using the same product prior to the trial (just not well)
- Which component of the intervention is most important?

Assumptions and commentary

Same results can be assumed for a detergent or another disinfectant

Secular trends – yes limitation, but (historical) data doesn't support



Plausibility for certain infection types

Environment this important?

- Shouldn't look at this in isolation

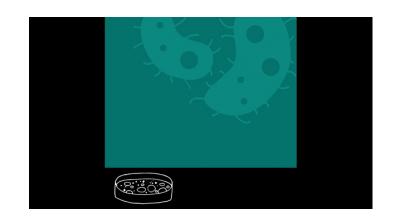
What's next

Dose-response paper

- Resources on the CLEEN study website
 - Learning plans
 - Training presentations
 - Feedback examples
 - Publications
 - Podcasts

CLEEN study: conclusions

- Intervention was effective at increasing the thoroughness of cleaning of shared medical equipment and reducing the prevalence of HAIs.
- Baseline, one in seven patients had a HAI, reducing to less than one in 10 patients.
- Enhanced cleaning and disinfection of shared medical equipment can reduce HAIs
- Enhances cleaning and disinfect of shared medical equipment saves hospitals money


Sharing of information

All our resources are being placed on the CLEEN study website, free, open source

Subscribe on the website for updates

Subscribe to infection control matters

www.cleenstudy.com

Final thoughts

The CLEEN intervention is a cost-saving initiative and a decision-maker who chooses not to invest in it forgoes an opportunity to maximise health gain from a scarce budget.

The ClEaning and Enhanced disiNfection (CLEEN) study: A stepped-wedge cluster randomised trial

May 2025

Brett Mitchell, Katrina Browne, Nicole White, Philip Russo, Allen Cheng, Andrew Stewardson, Georgia Matterson, Peta Tehan, Maham Amin, Maria Northcote, Martin Kiernan, Jennie King, David Brain, Nirmali Sivapragasam

